Principles of Toxicology

Poisonous Plants Class

Spring Semester 2010

Terminology

- Toxicology the study of adverse effects of xenobiotics on living organisms.
- Xenobiotic a chemical compound that is foreign to a living organism
- Poison any agent capable of producing a deleterious response in a biological system.
- LD₅₀ median lethal dose, or the dose required to kill 50% of treated animals
- Half Life (T_{1/2}) time required for one half of a substance to be removed

Key Principles

- Risk possibility of loss or injury
 - –Risk = Hazard X Exposure
 - Hazard intrinsic toxic properties

- Individual Sensitivity
 - Not all are created equal
 - Resistant and Susceptible

Dose

 Dose - the measured quantity of a therapeutic agent to be taken at one time

- mg of agent / kg body weight
 - (mg/kg)

The Dose Makes the Poison

"All substances are poisons; there is none which is not a poison. The right dose differentiates a poison from a remedy."

Paracelsus (1493-1541)

Agent

LD₅₀ (mg/kg)

Water	42,860
Sucrose	14,000
Ethyl alcohol	10,000
Salt (sodium chloride)	4,000
Iron (Ferrous sulfate)	1,500
Morphine	900
Mothballs	500
Acetaminophen (Tylenol)	350
Aspirin	250
DDT	250
Cyanide	10
Strychnine sulfate	2
Nicotine	1
Tetrodotoxin (from fish)	0.1
Abrin (plant lectin)	< 0.0001
Botulinum Toxin	0.00001

The Dose Makes the Poison

"Poisons and medicines are oftentimes the same substance given with different intents."

Peter Mere Latham (1789-1875)

The Dose Makes the Poison

- Poisonous plants and nutritious feeds are oftentimes the same substance consumed at different amounts.
 - For example:
 - Alfalfa
 - Lupine
 - Larkspur
 - Etc

Effects of Amount on Response

Effects of Size on Response

Dose-Response Relationship

The Timing Makes the Poison

- Teratogen of, relating to, or causing developmental malformations
 - i.e., something that will produce birth defects

Crooked Calf

Example of Lupine-induced "crooked calf disease"

Malformed Lamb

Fate of Plant Poisons in Livestock

- Risk = Hazard X Exposure
- Toxicokinetics what happens to a xenobiotic once it enters a body; in terms of its absorption, distribution, metabolism, and excretion
- ADME
 - Absorption
 - **D**istribution
 - Metabolism
 - -Elimination/Excretion

Exposure & Absorption

Route of exposure

- 1) Skin (dermal)
- 2) Lung (inhalation)
- 3) Oral (gut)

Frequency of Exposure

- Number of Exposures
 - -1 beer
 - -4 beers
- Time between Exposures
 - -4 Beers in an hour
 - –4 Beers in 4 Days

Single vs. Multiple Doses

Duration of Exposure

- Acute Exposure
- Sub-acute Exposure
- Sub-chronic Exposure
- Chronic Exposure

Distribution

- Where the compound goes and where it accumulates
 - (body water, fat, bone, muscle)
 - Water soluble (hydrophilic) vs. fat soluble (hydrophobic)

Metabolism

- How the body breaks down a xenobiotic
- What it turns into
- How fast it does it

Metabolism

Aflatoxin B₁-N⁷-guanine adduct

Aflatoxin B₁-glutathione adduct

Elimination/Excretion

- Removal of xenobiotic from body
 - Urinary
 - -Fecal
 - Non-absorbed material
 - Biliary excretion
 - Exhalation
 - -Milk
 - Sweat and Saliva

Slow vs. Rapid Elimination

Individual Variation

"The sensitivity of the individual differentiates a poison from a remedy. The fundamental principle of toxicology is the individual's response to a dose."

Steven G. Gilbert (1997)

Dose-Response Relationship

Susceptibility & Variability

- Differences in ADME
- Young or Old
- Male or Female
- Environmental Differences
- Genetic Differences
- Species Differences

Risk Assessment

Process of estimating association between an exposure and the incidence of some adverse outcome

-Determine risk of livestock grazing in a given area